skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Acharya, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unlike compressive sensing where the measurement outputs are assumed to be real-valued and have infinite precision, in one-bit compressive sensing, measurements are quantized to one bit, their signs. In this work, our contributions are as follows: 1. We show how to recover the support of sparse high-dimensional vectors in the 1-bit compressive sensing framework with an asymptotically near-optimal number of measurements. We do this by showing an equivalence between the task of support recovery using 1-bit compressive sensing and a well-studied combinatorial object known as Union Free Families. 2. We also improve the bounds on the number of measurements for approximately recovering vectors from 1-bit compressive sensing measurements. All our results are about universal measurements, namely the measurement schemes that work simultaneously for all sparse vectors. Our improved bounds naturally lead the way to suggest several interesting open problems. 
    more » « less